Unsupervised Color Image Segmentation Using Compound Markov Random Field Model
نویسندگان
چکیده
In this paper, we propose an unsupervised color image segmentation scheme using homotopy continuation method and Compound Markov Random Field (CMRF) model. The proposed scheme is recursive in nature where model parameter estimation and the image label estimation are alternated. Ohta (I1, I2, I3) model is used as the color model for image segmentation and we propose a compound MRF model taking care of intra-color and inter-color plane interactions. The CMRF model parameters are estimated using Maximum Conditional Pseudo Likelihood (MCPL) criterion and the MCPL estimates are obtained using homotopy continuation method. The image label estimation is formulated using Maximum a Posteriori criterion and the MAP estimates are obtained using hybrid algorithm. In the context of misclassification error, the proposed unsupervised scheme with CMRF model exhibited improved segmentation accuracy as compared to MRF model and Kato’s method.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Color Image Segmentation using MRF Models to Preserve Weak Edges
In this paper, an unsupervised color image segmentation scheme is proposed using homotopy continuation method. Different variants of MRF model is used to preserve both strong and weak edges. A Compound Markov Random Field (COMRF) model with Bi-level Binary Line Fields is proposed. The scheme is specifically meant to preserve weak edges besides the well defined strong edges.The proposed scheme i...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملUnsupervised segmentation of color textured images using a multilayer MRF model
Herein, we propose a novel multi-layer Markov random field (MRF) image segmentation model which aims at combining color and texture features: Each feature is associated to a so called feature layer, where an MRF model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model. This layer interacts with each feature layer and provides the segmentation ...
متن کامل